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Abstract

Lineage-specific expansion (LSE) plays a vital role in how prokaryotes gain new gene functions and
adapt to their environments. To uncover the mechanisms behind LSE, we identify genes that arise from
LSE by constructing phylogenetic trees of protein families across 400+ bacterial genomes. We found
that LSE genes tend to cluster on the chromosomes and form hyper LSE regions. Such regions could
not be explained solely by operon duplication. The locations of these hyper LSE regions are often re-
markably conserved among closely related strains, even though the gene content may not be con-
served. Furthermore, these hyper LSE regions frequently overlap with clusters of mobile genetic ele-
ments (MGE) and strain-specific genomic islands. We hypothesize that the majority of large strain-
specific gene duplications are mediated by MGE and are concentrated in regions prone to site-specific
MGE-driven recombinations. And the same regions for the same reason are more susceptible to phage
integration and to inter-genomic information exchange.

Methods

|dentification of LSE
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A LSE is identified by examining individual gene trees and finding the last common internal tree node
among paralogous genes:

a) At least one gene duplication event is observed at the LSE node level.

b) To identify only recent events, all children of the LSE node must come from a single phylogenetic
group of closely related species (see below).

c) Complicated gene trees require more sophisticated method to resolve, especially in cases when the
LSE node includes genes from multiple genomes, but some of these genomes are present as single-

Copy genes.
Complicated Gene Trees
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Closely related genomes are grouped if pair-wise divergence is
less than 5% (or d<=0.05) based on a Maximum-Likelihood tree constructed from a concatenated mul-
tiple sequence alignment of 70 highly conserved proteins.

Genome list at d<=0.05 in E. coli K12 group

855 Erwinia carotovora subsp. atroseptica SCRI1043 . .
1855  Escherichia coli 536 By grouping organisms at d<=0.05,
hon e the Bacillus genus are separated
@] 855 Escherichia coli K12 H
o 855 Escherichia coli O157:H7Y IntO 4 grOUpS.
g 855 Escherichia coli O157:H7 EDL933
- B55 Escherichia coli UTI8S 284 Bacillus anthracis str. 'Ames Ancestor’
o 855 Escherichia coli W3110 284  Bacillus anthracis str. Ames
855 Photorhabdus luminescens subsp. laumondii TTO1 284  Bacillus anthracis str. Sterne
855 Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B&7 284  Bacillus cereus ATCC 10987
855 Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 284  Bacillus cereus ATCC 14579
855 Salmonella enterica subsp. enterica serovar Typhi 284  Bacillus cereus ZK
855 Salmonella enterica subsp. enterica serovar Typhi Ty2 284  Bacillus thuringiensis serovar konkukian str. 97-27
855 Salmonella typhimurium LT2 288 Bacillus licheniformis DSM 13
855 Shigella boydii Sb227 288  Bacillus subtilis
855 Shigella dysenteriae Sd197 291 Bacillus halodurans
855 Shigella flexneri 2a str. 2457T 292  Bacillus clausii KSM-K16
855 Shigella flexneri 2a str. 301
855 Shigella flexneri 5 str. 8401
855 5Shigella sonnei 55046
B55 Yersinia pestis Antiqua
855 Yersinia pestis biovar Medievalis str. 91001
855 Yersinia pestis CO92
855 Yersinia pestis KIM
855  Yersinia pestis Nepal516
855 Yersinia pseudotuberculosis IP 3295

Terminology

LSE: the last common internal tree node among paralogs observed at d<=0.05. In this study, it refers to
the genomic full-length LSE unless noted otherwise.

LSE size: number of genes in LSE normalized by number of genomes observed in the LSE node.

LSE genes: genes from the same LSE node.

Types of LSE

MGE LSE: LSE that includes mobile genetic elements, such as transposases, IS elements, integrases, etc.
Prophage LSE: LSE that includes prophage genes that are not MGE.

Phage-like LSE: LSE that includes other phage homologs that are not prophage LSE nor MGE.

Plasmid LSE: LSE that includes plasmid genes that are not in the above categories.

Domain LSE: LSE that includes chromosomal genes that are not in the above types and of which duplication

occurs at the domain level.
Full-length LSE: the rest of the chromosomal LSEs, of which duplication occurs at the full-length protein

Results

Overview of LSE

Summary of all identified LSE by categories.

LSE Genes |LSE Genes per LSE |Genomes per LSE I{_gS:nEei:ngennmes}
MGE 22,809 2,137 10.67 1.86 5.74
Prophage 9,063 892 10.16 4.19 2.43
phage-like 5,920 903 6.56 2.15 3.05
Plasmid 9,718 1,938 5.01 1.80 2.78
Genomic Domain 32,457 5,738 5.66 2.12 2.67
Genomic Full-length” 46,661 10,491 4.45 2.09 2.13
Total 126,628| 22,099 N/A N/A N/A

* about 1500 FL-LSEs present only once in some genomes.

LSE vs Operons

|s on polycystronic operon?

Escherichia coli K12

Mo Yes
ves| 224 296
o~ Nofl 1500 | 2377
= P = 0.056
o
&
—  Streptomyces coelicolor A3(2)
wn
B No Yes
ves| 987 646
Nol 3761 | 2674
P=0.15

Baciflus subtilis Desulfovibrio vulgaris Hildenborough
Mo Yes Mo Yes
ves| 127 101 Yes 76 103
No| 1700 | 2273 No| 1347 | 2065
P = 0.00015 P =0.056

Prochlorococcus marinus MED4

Methanosarcina mazei Goel

MNO Yes Mo Yes
Yes 69 16 ves| 425 388
No| 1022 873 Nol 1093 | 1419

P < 1e-06 P < 0.0001

COG functions in LSE

Large Lineage-Specific Expansions Are Driven By Mobile Genetic Elements
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The majority of LSEs are small expansions
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Abundance of LSE genes in genomes is correlated with genome size
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Pair-wise genome alignments reveal LSE hot spots
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uncharacterized MGEs themselves.
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